Neck Linker Length Determin

نویسندگان

  • Shankar Shastry
  • William O. Hancock
چکیده

Defining the mechanical and biochemical determinates of kinesin processivity is important for understanding how diverse kinesins are tuned for specific cellular functions. Because transmission of mechanical forces through the 14–18 amino acid neck linker domain underlies coordinated stepping [1–6], we investigated the role of neck linker length, charge, and structure in kinesin-1 and kinesin-2 motor behavior. For optimum comparison with kinesin-1, the KIF3A head and neck linker of kinesin-2 were fused to the kinesin-1 neck coil and rod. Extending the 14-residue kinesin-1 neck linker reduced processivity, and shortening the 17-residue kinesin-2 neck linker enhanced processivity. When a proline in the kinesin-2 neck linker was replaced, kinesin-1 and kinesin-2 run lengths scaled identically with neck linker length, despite moving at different speeds. In low-ionic-strength buffer, charge had a dominant effect on motor processivity, which resolves ongoing controversy regarding the effect of neck linker length on kinesin processivity [3, 5–7]. From stochastic simulations, the results are best explained by neck linker extension slowing straindependent detachment of the rear head along with diminishing strain-dependent inhibition of ATP binding. These results help delineate how interhead strain maximizes stepping and suggest that less processive kinesins are tuned to coordinate with other motors differently than the maximally processive kinesin-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neck Linker Length Determines the Degree of Processivity in Kinesin-1 and Kinesin-2 Motors

Defining the mechanical and biochemical determinates of kinesin processivity is important for understanding how diverse kinesins are tuned for specific cellular functions. Because transmission of mechanical forces through the 14-18 amino acid neck linker domain underlies coordinated stepping, we investigated the role of neck linker length, charge, and structure in kinesin-1 and kinesin-2 motor ...

متن کامل

Interhead tension determines processivity across diverse N-terminal kinesins.

Consistent with their diverse intracellular roles, the processivity of N-terminal kinesin motors varies considerably between different families. Kinetics experiments on isolated motor domains suggest that differences in processivity result from differences in the underlying biochemistry of the catalytic heads. However, the length of the flexible neck linker domain also varies from 14 to 18 resi...

متن کامل

Controlling Kinesin by Reversible Disulfide Cross-Linking

Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwind...

متن کامل

Controlling Kinesin by Reversible Disulfide Cross-linking: Identifying the Motility-producing Conformational Change

Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwind...

متن کامل

Thermodynamic properties of the kinesin neck-region docking to the catalytic core.

Kinesin motors move on microtubules by a mechanism that involves a large, ATP-triggered conformational change in which a mechanical element called the neck linker docks onto the catalytic core, making contacts with the core throughout its length. Here, we investigate the thermodynamic properties of this conformational change using electron paramagnetic resonance (EPR) spectroscopy. We placed sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010